Solar Micro-grid Technology and Cost

Dr. Sudhir Kumar

Joint Director

World Institute of Sustainable Energy (WISE)

Mob: +91 96650 20206

drsudhirkumar@wisein.org

Outline of Presentation

Basics of Solar Energy

Solar Photovoltaic Technologies

Solar Thermal Technologies

Site Selection

Cost Estimation

Basics of Solar Energy

Basics of Solar Energy

- Electromagnetic radiation emitted by the sun, Diff. wavelengths, Heat, Light & UV
- 1367.7 W/m² outer space, 1000 W/m² on earth surface
- Direct radiation
- Diffuse radiation
- Two together referred as global radiation

Solar Radiation Measurements 1/3

- Global horizontal irradiance (GHI): Pyranometer
- Total: Direct + Diffuse
- Useful for PV

Solar Radiation Measurements 2/3

- Direct Normal Irradiance (DNI): Pyrheliometer
- Direct on perpendicular surface
- Useful for Reflectors, CSP

Solar Radiation Measurements 3/3

- Solar insolation total amount of solar energy received at a particular location during a specified time period
- Unit kWh/m²/day
- Power project :
 - » CSP min. 1800 kWh/m²/yr (Reported)
 - » SPV min. 1500 kWh/m²/yr (Suggested)
- Micro-grid: No standard
- Actual ground data: Not always available
- Derived data: NASA, METONORM, GeoModel

Solar Radiation Map 1/2

Solar Technology Options

- Solar Photovoltaic Electricity Generation
 - » Convert sunlight falling on PV cell into D.C. electricity
- Solar Thermal Electricity Generation
 - » Solar energy is focused through mirrors to heat working fluid
 - » Heated working fluid produce steam
 - » drive a turbine-generator to produce electricity

Winter or Summer Optimization

Solar Photovoltaic Technologies

Types of PV Cells

- Crystalline
 - » Mono-crystalline silicon solar cells
 - » Polycrystalline silicon solar cells
- Thin film
 - » Amorphous silicon
 - » Cadmium telluride
 - » Copper indium di-selenide
- Emerging technologies
 - » Gallium arsenide
 - » Organic semiconductors
 - » Dye-sensitized cells
 - » Nanotechnology solar cells
 - » Comparison Study:
 - http://www.wisein.org/pdf/PV Due Diligence

13

Types of PV Cells

Mono-crystalline Silicon Solar Cells

Majority solar cells manufacturers

- Input material SiO₂
- Principle of Czocharalski process

Practical efficiencies - 14 to 17%

Polycrystalline Silicon Solar Cells

Second most common natural substance

Manufacturing process - simpler and cheaper

Casting process

Practical efficiencies - 13 to 15%

Amorphous Silicon Solar Cell

- Requires low process temperature
- Technological capability for large-area deposition exists
- Has low material requirements
- Has larger band gap
- Low energy consumption during manufacture, and
- Possibility of automation of the manufacturing process: Commercialized
- Low efficiency 6-9%, faster degradation, light soaking reduction

Cadmium Telluride Solar Cell

- Highest theoretical conversion efficiency
- Energy gap of 1.44 e.v.
- Efficiency 6 to 10%
- Technically best among thin films
- Degradation more than crystalline
- Possibility of production hazards
- Environmental pollution
- Commercialized

Copper Indium Diselenide Solar Cell

- Ideal material photovoltaic application
- Band gap of 1.53 ev
- Efficiency 11.4%
- Number of alloy components makes the multiple processes extremely complex
- Expensive and rare metals cost of manufacturing increase
- Not commercialized

Gallium Arsenide

Used in space application

High cost

Most efficient solar cell

Cell efficiencies -about 30 to 34%

Too expensive for terrestrial applications

Organic Semiconductors

- Manufacture using processes reel-to-reel deposition
- Possibilities for ultra thin, flexible devices
- Solar power conversion efficiencies of over 3%
- Classified into insoluble, soluble and liquid crystalline
- Organic solar cells have a stability problem

Dye-sensitized Cells

- Photosensitization of wide-band-gap semiconductors
- Does not require high-purity semiconductors
- Efficiencies of 7% on 30 cm x 30 cm areas reached
- Considered as a potential and low-cost PV technology
- Under research

Nanotechnology solar cells

- To increase the efficiency of solar cells
- To reduce manufacturing cost
- Not made from silicon
- Not require expensive equipment
- Utilize tiny nano-rods
- Spectrum modification
- Rare earth metals: Lanthenides
 - » Praseodymium- Pr³⁺
 - » Yttrium fluorides- YF₃
 - » Gadolinium- Gd³⁺

Suitability for Micro-grid Applications

- Use the polycrystalline modules solely because
 - » Slight cost advantage,
 - » Relatively easier availability with vendors
 - » Good efficiency
 - » Least degradation
 - » Local availability and
 - » Better life

Photovoltaic Micro-grid

Solar Thermal Technologies

Types of Solar Thermal Technologies

Parabolic trough solar thermal system

 Compact linear fresnel reflector (CLFR) solar thermal system

- Parabolic dish solar thermal system
- Power tower solar thermal system

Types of Solar Thermal Technologies

Parabolic Trough Systems

- Parabolically curved, trough-shaped reflectors
- Run in a north-south direction and track the sun from east to west
- Absorber pipes consist of a metal pipe which contains HTF surrounded by a glass pipe
- Hot HTF is used to generate steam
- Steam used to power a steam turbine to turn an electric generator to produce electricity

Parabolic Trough Systems -Andasol, Spain

Parabolic Trough Systems -Andasol, Spain

Compact Linear Fresnel Reflector (CLFR)

- Line focusing system
- Array of nearly flat reflectors
- Flat segments of rectangular shaped mirrors are arranged horizontally in a north-south direction

Track the sun from east to west

CLFR- Kogan Creek, Australia

Parabolic Dish

A parabolic-shaped point focus concentrator

 Reflects solar radiation onto a receiver mounted at the focal point

 Concentrators are mounted on a structure with a two axis tracking system

 Collected heat utilized directly by a heat engine (sterling engine)

Parabolic Dish

Power Tower

- Called central receivers
- Utilizes a two axis sun-tracking mirrors called heliostats
- HTF heated in the receiver
- Used to generate steam in the steam generator
- Steam is used to power steam power cycle to turn steam turbine to generate electricity

Power Tower- Abengoa, Spain

Power Tower- Abengoa, Spain

Power Tower- Abengoa, Spain

Suitability for Micro-grid Applications

- Parabolic trough systems, CLFR systems & solar tower systems not suitable
- Parabolic dish systems only suitable

Small Scale Electric Power from Solar Thermal Energy

Site Selection

Site Selection Criteria 1/2

Solar radiation

- Depends greatly upon the reliable annual average solar radiation data
- Directly affecting the output, project feasibility, technoeconomic viability and performance of the project
- Determine the amount, quality and duration of solar energy available at a specific site

Topography and soil testing

- Provides information about topography, geology and soil type
- Concerned with local detail: elevation, contours, vegetation and human-made features
- ➤ Involves the recording of terrain, the quality of the surface, and identification of specific land forms
- Could stand the weight and vibrations of the power plant

Site Selection Criteria 2/2

Meteorological assessment

Average annual temperature, relative humidity, wind speed, precipitation

Flood risks and drainage arrangement

Site should be free from flood risks and proper drainage infrastructure should be provided

Seismic zone

- > Site must be free from any seismic hazards
- Or care must be taken while designing and construction to minimize loss

Approach road and other infrastructure

> Site must be easily assessable

Cost Estimation

Cost Estimation

Sample 100 kW polycrystalline PV system without battery

SN	Item	Approx. cost/ 100 kW (INR Lakh)
1	Polycrystalline modules	41
2	Inverter	10
3	Transformer	5
4	Support structure	15
5	Electric cables	8
6	Junction boxes	8
7	Civil and misc. electrical work	10
	Sub-total	97
8	Contingency/ miscellaneous (5% of Sub-total)	4.85
	Grand Total	101.85

Cost Estimation Costs of dish sterling CSP system

SN	Dish details	Approx. cost/dish	Approx. cost/ 100 kW (INR Lakh)
1	25 kW SES dish	Unknown	Unknown
2	3 kW Infinia	USD 20000	421
3	10 kW Euro dish	Unknown	Unknown

CSP is a technology of scale and not suitable for small capacity projects

THANK YOU

World Institute of Sustainable Energy 44, Hindustan Estate, Road No.2, Kalyani Nagar, Pune- 411 006

Tel: +91 20 2661 3832/55 Fax: +91 20 26611438

Email: cse@wisein.org

Website: www.wisein.org